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[Abstract] 

 

Monthly energy use in individual buildings is informative data on seasonal energy consumption 

in urban areas. In the related previous studies based on statistical estimation, mean and variance 

of energy use for each month have been investigated. However, correlation between energy uses 

in different months has not been investigated despite of its existence and importance for 

probabilistic approach. This study provides a regression-based method for modeling a joint 

probability distribution of monthly electricity and gas uses for a year in individual urban buildings, 

which reflects correlation between energy uses in different months and between electricity and 

gas. The mean vector of monthly energy uses is estimated by linear regression models where the 

explanatory variables are floor area, number of stories, and approval year for use of individual 

buildings. The covariance matrix of monthly energy uses is estimated using the sample covariance 

of the residuals of the regression models. Non-constant but increasing covariance 

(heteroskedasticity) of energy use with increasing floor area has been reflected to ensure realistic 

magnitude of covariance for a given building size. Based on the estimated mean vector and 

covariance matrix, a multivariate normal distribution of monthly electricity and gas uses can be 

established. The multivariate normal distribution can be used for two kinds of tasks which were 

not able without consideration of correlation – i) sampling vectors of monthly energy uses for a 

given set of building features, with realistic seasonal patterns and magnitudes of energy use, and 

ii) data correction like filling in missing values with reasonable values (imputation) and 

prediction of future values of monthly energy uses in a target building, given correctly measured 

monthly energy use for some months.  



[1. Introduction] 

 

In 2021, the operation of buildings accounted for 30% of global final energy consumption and 

27% of total energy sector emissions [1]. Energy saving in building sector is one of the most 

important activities to alleviate global warming and improve environmental sustainability. One of 

the key factors for energy saving in building sector is development of estimation methods for 

energy consumption in individual buildings. Such methods can provide information of building 

energy performance to decision makers related to energy policy making and energy 

infrastructure planning. 

The methods for estimation of energy use in individual buildings can be separated into two 

categories – physical methods, and statistical methods [2, 3, 4]. Physical methods adopt detailed 

physical constraint-based models of building components and external conditions (e.g. detailed 

construction fabric, detailed shape, lightning and heating, ventilation and air conditioning system, 

indoor schedule, climate information), then estimate energy use in a target building by simulation 

tool. Statistical methods adopt regression models which contains energy use record of many 

individual buildings as the response variable, and features in building register (e.g. floor area, 

number of stories, category of construction fabric, construction date, etc.) as explanatory 

variables.  

This study belongs to statistical methods, and there are several previous studies on statistical 

methods for estimation of annual energy use in individual buildings. Many of the studies provide 

estimation of annual energy use per floor area in the unit of kWh/m2 year (often called as energy 

intensity), because the annual energy use of a target building can be estimated as the energy 

intensity multiplied with its floor area. Some studies have reported constant values of energy 

intensity of major building uses (e.g. office, retail, hospital, school, etc.) [5, 6, 7]. The other studies 

have provided linear regression models for estimation of annual energy consumption itself [8, 9] 

or energy intensity [4, 10, 11] as a function of building features. 

This study focuses on ‘monthly’ energy use in individual buildings, which reflects seasonality 

of energy use. In general, electricity use in a building is relatively higher in summer due to cooling, 

while gas use in a building is relatively higher in winter due to heating. Such information of 

seasonality is helpful for scheduling of fuel supplies, maintenance operation of the utilities and 

negotiation of contracts between energy companies [12]. Aggregation of monthly energy use of 

buildings in an urban area enables planning of distributed energy infrastructure and estimation 

of total capacity of building-integrated energy sources [13]. Also, hourly energy demand pattern 



of a building, which is necessary for energy dispatch scheduling, can be estimated from the record 

of monthly energy use of the building [14, 15, 16].  

There are a few previous studies on statistical estimation of monthly energy use in individual 

buildings, which have been feasible due to availability of open database of monthly energy use in 

many buildings [15]. The representative studies are as follows.  

i) Catalina et al. [17] used linear regression to estimate heating demand in each month for heating 

period. The dataset has been generated by a dynamic simulation tool for building energy 

assessment. The explanatory variables are building characteristics (shape factor, transmittance 

coefficients, window to floor area ratio, etc.) and climate factors (outdoor temperature and global 

radiation).  

ii) Kim et al. [18] used linear regression to estimate electricity use and gas use in each month for 

a year. The dataset has been obtained from Korean Management System for Building Energy 

Database. The explanatory variables are floor area, indicator variables for month, building use 

(neighborhood living or office), subdistrict, number of stories, fabric types of structure and roof.  

iii) Xu et al. [19] used two-step 𝑘𝑘-means clustering to divide the dataset of monthly electricity 

use in buildings into 16 subsets, then fitted separate normal distribution to each subset. In the 

first step, the whole dataset has been divided into 4 subsets with respect to magnitude of 

electricity use. In the second step, each of the 4 subsets has been further divided into 4 subsets 

with respect to seasonal pattern of electricity use. The dataset has been obtained from smart 

meter dataset of six cities in Jiangsu province. 

The common limitation of the previous studies on statistical estimation of monthly energy use 

in individual buildings is ignorance of correlation between energy uses in different months or 

different energy types. In practice, energy uses in different months are expected to be correlated. 

For example, a building which uses much more electricity in January compared to other buildings 

with similar size is expected to use much more electricity in February as well. In this sense, 

positive correlation between electricity uses in January and February is expected. Another 

example is that gas use for heating in a building depends on the amount of electricity used for 

electrified heating which is a substitute of gas heating. In this sense, negative correlation between 

electricity and gas uses in winter is expected. 

Considering monthly electricity and gas uses for a year in a building as a 24-dimensional vector, 

the previous studies have reported information of mean vector and diagonal terms of covariance 

matrix of the 24-dimensional vector of monthly energy use in individual buildings. However, off-

diagonal terms of covariance matrix have not been investigated yet. Information of full covariance 

matrix including off-diagonal terms enables construction of a ‘joint’ probability of the vector of 



monthly energy use in individual buildings. The joint probability model enables drawing vector 

samples of monthly energy uses in target buildings given their features, which would be helpful 

for energy planning for new urban towns with consideration of uncertainty in building energy 

demand. Also, the joint probability model can enhance data quality, by application to data 

imputation and prediction which can be done by consideration of correlation in data. 

The objective of this study is to provide a statistical method for estimation of ‘joint’ probability 

distribution of ‘monthly’ energy uses for a year in individual urban building. Section 2 presents 

the dataset used in this study, subset and variable selection for regression, and data pre-

processing. Section 3 presents estimation of moment conditions (mean vector and full covariance 

matrix) of the vector of monthly energy use in individual buildings, based on linear regression 

models. Section 4 presents the joint probability model and its applications. Section 5 concludes 

this study with a summary. 

 

[2. Data] 

 

[2.1. Data description] 

The following two datasets have been merged and used – i) dataset of monthly electricity and 

gas use in individual non-residential buildings, provided by Korean Ministry of Land since late 

2015; and ii) dataset of building register which includes features of building. Each row of the two 

datasets corresponds to a single building or multiple buildings corresponding to one address. 

Each column of the dataset of monthly electricity and gas use is record of electricity use or gas 

use for one month (in the unit of kWh). The columns of the dataset of building register include 

address, building use (e.g. office, living neighborhood, hospital, welfare, retail, school, etc), site 

area, sum of floor area in all stories, number of stories, structure of building and roof, approval 

date for use, etc. 



 

Figure 1. Typical seasonal pattern of monthly energy use in an exemplary building. 

 

Figure 1 shows the typical seasonal pattern of monthly energy use in an exemplary building. 

The amount of electricity use is relatively higher in summer due to cooling, and relatively lower 

in spring and fall. The amount of electricity use in winter is usually similar to that in spring or fall. 

However, in some buildings, it may be as high as that in summer due to recently increasing 

electrification of heating. The amount of gas use in winter is relatively higher than that in other 

seasons due to heating. The amount of gas use in seasons other than winter varies much in 

different buildings depending on building use. 

 

Figure 2. Electricity use for January 2021 in a subset of office buildings in Seoul, for varying floor area (red 

hollow circles are suspicious to be influential points). 

 

The dataset of monthly energy use in individual buildings has high variance. Figure 2 shows the 

electricity use in January 2021 in a subset of office buildings in Seoul, for varying floor area. Each 

data point in Figure 2 corresponds to one office building. The scatterplot presented a somewhat 

linear relationship, but instead of showing an intensive curve, the dots are more dispersed 



towards the end, especially dispersed for higher floor area. This spreading of the points implies 

two things – i) magnitude of energy use of buildings with similar size can be quite different from 

building to building, and ii) modern machine learning methods (like neural networks) with low 

bias but higher variance [20] are not appropriate for this dataset. Rather, traditional linear 

regression is appropriate for this dataset because linear regression is a method with high bias but 

lower variance. 

 

[2.2. Data setting] 

Among many features in the building register used in this study, the following features may be 

used to estimate the monthly energy use of individual buildings; floor area, building use, number 

of stories, approval year for use, category of building structure, and category of roof structure. 

The features listed above can be explanatory variables for regression. For example, floor area 

of individual buildings can be an explanatory variable because the average energy use in 

individual buildings is expected to increase with increasing building size which is reflected by 

floor area. 

Conversely, the dataset can be divided into subsets with respect to some of the features to make 

multiple regression models each for one subset. Division into subsets is necessary if the model 

coefficients are different from subset to subset. For example, the dataset can be divided with 

respect to building use because energy intensity, which is the coefficient of floor area, has been 

consistently found to be different for every building use in the previous studies on statistical 

estimation of energy use in buildings. 

 

[2.2.1. Subsets of the data] 

In this study, addition to building use, two additional criteria for subset division have been 

considered: interval of floor area, and use of gas. The two criteria for division has been selected 

due to the following reasons. 

i) Interval of floor area: Floor area of individual buildings ranges in a very wide interval, from 

under 100 m2 to over 100,000 m2. In Seoul green building standard, the interval of floor area of a 

building has been divided into four subintervals – under 3,000 m2, 3,000 m2 to 10,000 m2, 10,000 

m2 to 100,000 m2, and over 100,000 m2. Different standards of energy performance, management, 

and renewable energy penetration are applied to each subinterval. Thus, dividing the dataset with 

respect to the floor area intervals in the standard would make the result of this study practically 



available to users in energy policy field. Dividing into clusters obtained by 𝑘𝑘-means method as in 

[19] is not considered since it is hard to explain for domain purpose and the optimal classification 

boundaries can vary for different datasets. Taking log of floor area as in [18] is not considered 

because the important purpose of this research is to quantify covariance between monthly energy 

use in different months, not covariance between logged values of monthly energy use. 

ii) Use of gas: Some buildings do not use gas, while others use gas. This difference has not been 

considered as a factor in the previous studies, but it is expected to affect average electricity use in 

winter because electricity and gas are substitutes for heating in winter. If a building does not use 

gas and meets its heating demand totally by electric heating, electricity use in winter is expected 

to be much higher than that in spring or fall. On the contrary, in a building which uses gas for 

meeting its heating demand, electricity use in winter is expected to be similar to that in spring or 

fall. 

Subsets 

Using gas Not using gas 

Under 

3,000 m2 

3,000 m2 ~ 

10,000 m2 

10,000 m2~ 

100,000 m2 

Over 

100,000 m2 

Under 

3,000 m2 

3,000 m2 ~ 

10,000 m2 

10,000 m2~ 

100,000 m2 

Over 

100,000 m2 

Office Subset 1 Subset 2 …      

Neighborhood(I)         

Neighborhood(II)         

Hospital         

Sales         

Welfare         

Lodging         

Education         

Religious         

Cultural         

Table 1. Outline of the division of the building energy dataset into subsets. 

 

Table 1 shows the outline of subset division with respect to the three criteria. Subset division 

by interval floor area and use of gas will be justified by a statistical test explained in Section 2.2.3, 

based on linear regression with response variables and explanatory variables explained in Section 

2.2.2. 

 

 



[2.2.2. Response and explanatory variables for regression] 

 

The response variables are electricity and gas use in individual months (for year 2021). For 

each subset of buildings which use gas, 24 linear regression models are fitted – 12 months 

multiplied with 2 energy types (electricity and gas). Thus, for a given set of explanatory variables, 

the mean of electricity or gas use in each month can be estimated separately. 

The candidates for explanatory variables are as follows – floor area, number of stories, approval 

year for use of building (for example, a value 2000 means that the building has been used since 

year 2000), category of building structure, and category of roof structure. The category of building 

structure includes ferroconcrete, steel-concrete, steel-frame, brick, cement block, timber, etc. The 

category of roof structure includes ferroconcrete, slate, tile, etc. Among these candidates, 

variables to be used for fitting regression models should be determined. 

A one-variable regression model including floor area as the only explanatory variable has been 

considered as the base model. Then, other regression models with additional explanatory 

variables and interaction terms between floor area and each of the additional explanatory 

variables have been compared with the base model, in terms of explanatory power (adjusted 𝑅𝑅2). 

The interaction terms can reflect effects of the additional explanatory variables to the intercept 

and slope of the linear relationship between monthly energy use and floor. For demonstration, the 

subset of 2,326 office buildings using gas with floor area less than 3,000 m2 has been selected. 

According to the demonstration, number of stories and approval year have been found to 

enhance explanatory power of the regression model. However, categories of building and roof 

structures have been found not to enhance explanatory power. Table 2 shows the values of 

adjusted 𝑅𝑅2  for some selected months, corresponding to six cases – i) floor area only (base 

model); ii) floor area and number of stories; iii) floor area and approval year; iv) floor area and 

categories of building and roof structures; v) floor area, number of stories, and approval year; vi) 

all the explanatory variables mentioned above. Compared to the base model, the cases with 

number of stories or approval year showed greater adjusted 𝑅𝑅2 . However, the case with 

categories of structure but without number of stories and approval year showed little 

improvement in adjusted 𝑅𝑅2. 

 

 



Variables Case i Case ii Case iii Case iv Case v Case vi 

Floor area O O O O O O 

Number of stories X O X X O O 

Approval year X X O X O O 

Building structure X X X O X O 

Roof structure X X X O X O 

Adjusted 𝑅𝑅2 Case i Case ii Case iii Case iv Case v Case vi 

Electricity, January 0.436 0.537 0.563 0.438 0.573 0.576 

Electricity, May 0.474 0.526 0.544 0.465 0.540 0.540 

Electricity, August 0.525 0.571 0.587 0.524 0.590 0.591 

Gas, January 0.348 0.445 0.433 0.353 0.458 0.460 

Gas, May 0.240 0.283 0.288 0.247 0.296 0.300 

Table 2. Adjusted 𝑅𝑅2 of linear regression models each with different response variable (energy use in some 

selected months) and different set of explanatory variables. O and X denote inclusion and exclusion of the 

corresponding variable in the regression model, respectively. 

 

Adding number of stories and approval year enhances explanatory power of the model because 

it makes the model reflect the following aspects – i) heating, ventilation, and air conditioning 

demand related to surface-volume ratio which is usually higher for tall buildings [21], ii) 

occupancy rate of the buildings due to business and commercial use which is usually higher for 

short buildings [18], iii) energy performance of electric appliances and insulation which is usually 

better for recently built buildings. Meanwhile, categories of building and roof structure could not 

enhance explanatory power in this study, because most of the buildings belong to one category of 

building structure and one roof structure. Depending on the building use, about 80~95% of 

buildings belong to ferroconcrete building and roof. Due to the imbalance of the categorical data, 

it is hard to estimate the average difference of energy use between different structures, resulting 

in little enhancement of explanatory power by adding category of structure to the regression 

models. 

Consequently, three features have been adopted as the explanatory variables in this study – 

floor area, number of stories, approval year. Also, the interactions between floor area and number 

of stories, and between floor area and approval year have been included. Categories of structure 

have been excluded because they have little positive impact on explanatory power, and because 

the categorical variables make the model too complex due to many binary indicator variables. 



Although the number of stories is expected to increase with increasing floor area, 

multicollinearity problem is not expected. For example, the variation inflation factors of floor area, 

number of stories, and approval year in the model for electricity use in January without 

interaction terms are 1.447, 2.417, and 1.844, respectively, which are below 5.0 (which is the rule 

of thumb for potential multicollinearity). 

 

[2.2.3 Statistical test for subset division] 

To explain the regression-based statistical test, notations of the data are presented. Denote 

electricity and gas use in month 𝑚𝑚 in building 𝑖𝑖 as 𝑦𝑦𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 and 𝑦𝑦𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔,𝑚𝑚, respectively. Then, 12-

dimensional column vectors 𝑦𝑦𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �𝑦𝑦𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1,⋯ ,𝑦𝑦𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,12�
𝑇𝑇

  and 𝑦𝑦𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔 = �𝑦𝑦𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔,1,⋯ ,𝑦𝑦𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔,12�

𝑇𝑇
  are the 

record of monthly electricity and gas use for a year, respectively. For the regression model 

corresponding to electricity use in 𝑚𝑚th month, the data vector of response variable is 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 =

�𝑦𝑦1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚,⋯ ,𝑦𝑦𝑁𝑁

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚�
𝑇𝑇  where 𝑁𝑁  is the total number of data points. Also denote 𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 , 𝑥𝑥𝑖𝑖

𝑔𝑔𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠  and 

𝑥𝑥𝑖𝑖
𝑠𝑠𝑒𝑒𝑔𝑔𝑎𝑎 as floor area, number of stories, and approval year of 𝑖𝑖th building, respectively. Then, the 

set of values of explanatory variables for 𝑖𝑖 th data point is a six-dimensional vector 𝑥𝑥𝑖𝑖 =

�1, 𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔, 𝑥𝑥𝑖𝑖
𝑔𝑔𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠, 𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔𝑥𝑥𝑖𝑖

𝑔𝑔𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠, 𝑥𝑥𝑖𝑖
𝑠𝑠𝑒𝑒𝑔𝑔𝑎𝑎 , 𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔𝑥𝑥𝑖𝑖

𝑠𝑠𝑒𝑒𝑔𝑔𝑎𝑎�
𝑇𝑇  (where 1 is added to estimate the intercept of the 

model), and the data matrix of explanatory variables is 𝑋𝑋 = [𝑥𝑥1,⋯ , 𝑥𝑥𝑁𝑁]𝑇𝑇 . The linear regression 

model for electricity use in 𝑚𝑚th month is presented as 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = 𝑋𝑋𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 + 𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 , where 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 

is the model coefficient vector and 𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = �𝜖𝜖1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚,⋯ , 𝜖𝜖𝑁𝑁

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚�
𝑇𝑇 is the error vector. The value of 

𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 can be estimated as �̂�𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 by solving ordinary least squares problem, 

which aims to minimize the sum of squared errors (𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚)𝑇𝑇𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚. Using �̂�𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚, residual vector 

𝜖𝜖̂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 − 𝑋𝑋�̂�𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚  and residual sum of squares 𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = (𝜖𝜖̂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚)𝑇𝑇𝜖𝜖̂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚  can also be 

computed. 

Suppose that partitioning 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 and 𝑋𝑋 into ��𝑦𝑦𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚�
𝑇𝑇
  �𝑦𝑦𝐵𝐵

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚�
𝑇𝑇
�
𝑇𝑇
 and [𝑋𝑋𝐴𝐴𝑇𝑇  𝑋𝑋𝐵𝐵𝑇𝑇]𝑇𝑇, respectively, 

is of interest. If partitioned, two separate regression models 𝑦𝑦𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = 𝑋𝑋𝐴𝐴𝛽𝛽𝐴𝐴
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 + 𝜖𝜖𝐴𝐴

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚  and 

𝑦𝑦𝐵𝐵
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = 𝑋𝑋𝐵𝐵𝛽𝛽𝐵𝐵

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 + 𝜖𝜖𝐵𝐵
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚  can be constructed. If the true values of 𝛽𝛽𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚  and 𝛽𝛽𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚  are the 

same, the partitioning is meaningless since a single combined regression model 𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 =

𝑋𝑋𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 + 𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 would be sufficient to explain the whole data. On the contrary, the partitioning 

is necessary if the true values of 𝛽𝛽𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 and 𝛽𝛽𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 are different. Thus, the null hypothesis of the 

test is 𝛽𝛽𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = 𝛽𝛽𝐵𝐵
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 while the alternative hypothesis is 𝛽𝛽𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 ≠ 𝛽𝛽𝐵𝐵

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚. The null hypothesis 

can be viewed as a set of equality restrictions to the model coefficients. From this view, SS𝑅𝑅𝑅𝑅
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 

is defined as the residual sum of squares of the single combined model, the subscript 𝑅𝑅 means 



restricted. In the similar sense, 𝑆𝑆𝑆𝑆𝑅𝑅𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 is defined as the sum of the two residual sum of squares 

of the two models each for one partition, where the subscript 𝑈𝑈 means unrestricted. Then, the 

test statistic (which approximately follows 𝐹𝐹  distribution under the null hypothesis) can be 

computed as in Equation 1 [22]. 

�SS𝑅𝑅𝑅𝑅
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚−𝑆𝑆𝑆𝑆𝑅𝑅𝑈𝑈

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚�/𝑎𝑎

𝑆𝑆𝑆𝑆𝑅𝑅𝑈𝑈
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚/(𝑁𝑁−𝑘𝑘)

∼ 𝐹𝐹(𝑟𝑟,𝑁𝑁 − 𝑘𝑘)   (1) 

where 𝑟𝑟  is the number of restrictions, and 𝑘𝑘  is the sum of the number of parameters in the 

separate regression models for each partition. The null hypothesis is rejected if the value of test 

statistic is over the critical value for a given significance level. 

If a building dataset is partitioned based on use of gas, two partitions are made (using gas, not 

using gas). 𝑟𝑟  and 𝑘𝑘  are 6 and 12, respectively, since 𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚  is a six-dimensional vector. If a 

building dataset is partitioned based on floor area interval, four partitions are made (under 3,000 

m2, 3,000 m2 to 10,000 m2, 10,000 m2 to 100,000 m2, and over 100,000 m2). However, for the test 

in this study, only the first three partitions are considered for the test because the last partition 

contains only a few or even no buildings depending on the building use. For three partitions, 𝑟𝑟 

and 𝑘𝑘 are 12 and 18, respectively. 

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Office 276.32 262.38 181.13 77.85 42.95 46.74 51.15 44.08 46.92 33.87 68.44 161.45 

Neighborhood(I) 246.41 253.95 135.36 49.44 35.54 34.16 39.63 44.26 41.65 37.45 42.28 111.58 

Neighborhood(II) 378.46 414.09 200.75 42.81 25.93 31.07 46.55 63.96 45.32 37.25 35.75 149.85 

Hospital 1.04 1.71 1.36 1.42 1.40 1.31 1.20 1.07 1.52 1.86 1.39 1.37 

Sales 8.65 7.31 7.89 9.02 8.60 9.56 8.69 8.28 8.03 8.24 8.66 8.35 

Welfare 10.04 14.03 11.80 14.31 10.98 10.65 9.75 11.22 11.99 11.49 11.41 11.26 

Lodging 64.35 63.19 63.14 55.05 36.58 17.94 7.81 3.30 5.53 10.81 48.40 64.07 

Education 16.42 18.94 14.73 8.54 8.28 8.93 9.43 7.73 6.22 5.93 8.84 11.18 

Religious 8.62 8.84 8.31 9.38 9.70 8.19 6.12 4.95 4.82 6.64 8.34 8.50 

Cultural 2.53 3.01 2.55 2.86 3.06 2.49 2.09 1.79 2.09 2.26 2.85 3.60 

Table 3. Test statistics for the hypothesis of dividing subsets with respect to use of gas, computed for the set 

of each building use with floor area under 3,000 m2. 

 

Table 3 shows that the null hypothesis of partitioning based on use of gas is rejected for most 

of the cases, which implies that it is necessary to partition the building dataset based on use of 

gas. Most of the values of test statistic computed for subsets, each corresponding to one of the 

buildings uses and floor area under 3,000 m2, are over the critical value for 1% significance level 

𝐹𝐹0.01(6,∞) = 2.803. The values of test statistic are especially higher for winter, which supports the 

expected difference in magnitude of electricity use in winter depending on use of gas heating.  



 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

Office 10.97 12.56 8.06 8.40 9.53 9.78 9.46 8.92 8.92 9.02 9.52 12.04 

Neighborhood(I) 746.29 617.97 602.20 636.65 735.71 777.12 889.17 619.81 606.53 584.62 636.23 705.95 

Neighborhood(II) 537.76 552.68 522.78 468.37 458.24 528.57 574.42 384.83 384.62 423.20 540.94 706.01 

Hospital 10.93 9.89 8.62 8.62 8.78 8.03 8.15 6.51 6.36 7.34 10.06 9.84 

Sales 8.05 7.84 8.09 8.09 8.18 8.36 8.45 7.96 8.13 8.14 8.22 8.30 

Welfare 62.38 76.22 65.22 91.64 86.21 69.55 56.81 63.63 88.15 89.17 74.26 62.49 

Lodging 6.81 9.24 12.79 15.78 13.55 11.58 11.08 11.34 13.53 17.02 14.34 10.88 

Education 9.80 10.90 8.55 8.20 6.62 6.04 5.99 6.34 6.68 6.27 7.78 9.05 

Religious 27.72 22.99 30.39 41.89 44.90 61.37 53.32 33.80 52.23 50.30 38.37 34.37 

Cultural 34.58 22.99 36.72 38.41 53.60 46.67 33.23 27.40 14.69 28.56 36.97 37.75 

Table 4. Test statistics for the hypothesis of dividing subsets with respect to floor area interval, computed 

for the set of each building use with gas use. 

 

Table 4 shows that the null hypothesis of partitioning based on floor area interval is rejected 

for most of the cases, which implies that it is necessary to partition the building dataset based on 

floor area interval. Most of the values of test statistic computed for subsets, each corresponding 

to one of the buildings uses and buildings using gas, are over the critical value for 1% significance 

level 𝐹𝐹0.01(12,∞) = 2.187. 

It is noted that the statistical test has been done using the pre-processed dataset cleaned by the 

process explained in Section 2.3. 

 

[2.3. Data pre-processing] 

There is an issue of data quality of the raw dataset of monthly energy use in individual buildings 

because there are many abnormal data points which have missing or unrealistic values. In this 

study, abnormal data points are deleted from the dataset because the number of rows of the total 

dataset is large enough (order of 104). The points with missing numbers, points with abnormal 

seasonal patterns, and points with abnormal magnitude of energy use have been deleted. 

 

[2.3.1. Data points with missing numbers] 

The detailed criteria of deletion are as follows: 

i) Any of the 12 values of monthly energy use in the building is missing. 

ii) Any of the 3 values of monthly gas use in the building in winter (January, February, and 



December) is missing or abnormally low if any of the values of gas use in other months is positive, 

because it is unusual that a building which uses gas during spring, summer or fall does not use 

gas or use only a small amount of gas in winter. It is noted that a data point with no record of gas 

use in all months is regarded as a building not using gas and preserved. 

iii) Any of the values of monthly energy use is negative. 

iv) Any of the values of explanatory variables is missing. 

After applying the criteria to the dataset of buildings in Seoul for year 2021, 79,427 data points 

have been preserved. 

 

[2.3.2. Data points with abnormal seasonal patterns] 

Data points with abnormal seasonal patterns of energy use, which is far different from the 

exemplary pattern shown in Figure 1, have been deleted. Figure 3 shows examples of the 

abnormal seasonal patterns of monthly energy use in buildings. The cause of such abnormal 

patterns may be measurement error, or relatively rapid increasing or decreasing occupants. It is 

noted that the vertical axis in Figure 3 is the fraction of annual energy use for each month, to 

investigate only the shape of the seasonal patterns after control of the effect of building size on 

energy use. 

 

Figure 3. Abnormal seasonal patterns of monthly energy use in individual buildings (Left: electricity, Right: 

gas). 

 

To apply the method for identification of data points with abnormal seasonal patterns, the 

dataset of monthly energy use in individual buildings has been transformed into a dataset of 

portion of annual energy use for each month. Dividing 𝑦𝑦𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  with its absolute-value norm �𝑦𝑦𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�1, 



the obtained vector 𝑦𝑦�𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑦𝑦𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/�𝑦𝑦𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�1  represents fraction of annual electricity use for each 

month. 𝑦𝑦�𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑦𝑦𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔/�𝑦𝑦𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔�

1
 , which represents faction of annual gas use for each month, can be 

obtained in the same way. By aggregation of 𝑦𝑦�𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑦𝑦�𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔 of all buildings, new 𝑁𝑁 × 12 data 

matrices 𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = [𝑦𝑦�1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,  ⋯ 𝑦𝑦�𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒]𝑇𝑇  and 𝑌𝑌�𝑔𝑔𝑔𝑔𝑔𝑔 = �𝑦𝑦�1
𝑔𝑔𝑔𝑔𝑔𝑔,  ⋯  ,𝑦𝑦�𝑁𝑁

𝑔𝑔𝑔𝑔𝑔𝑔�𝑇𝑇 , representing the transformed 

dataset, can be obtained. 

A data point with abnormal seasonal pattern of electricity use can be considered as a point 

which is far from the cluster of points in the 12-dimensional vector space composed of row 

vectors in 𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. A common approach to find such remote points in the vector space is to compute 

diagonal elements of the matrix 𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ��𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑇𝑇𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
−1
�𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�𝑇𝑇 (often called as hat matrix) [23]. 

𝑖𝑖th diagonal element ℎ�𝑖𝑖𝑖𝑖 of the hat matrix can be written as in Equation 2. 

ℎ�𝑖𝑖𝑖𝑖 = �𝑦𝑦�𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
𝑇𝑇
��𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

𝑇𝑇𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
−1
𝑦𝑦�𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒      (2) 

A rule of thumb is to consider 𝑖𝑖th point as a remote point if ℎ�𝑖𝑖𝑖𝑖 is larger than 2𝑘𝑘/𝑁𝑁 where 𝑘𝑘 is 

the dimension of the vector space (12 in this study). The points considered to be remote points 

following the rule of thumb were found to have abnormal seasonal patterns of electricity use as 

shown in Figure 3 and deleted from the dataset. The points which have abnormal seasonal 

patterns of gas use as shown in Figure 3 have been deleted in the same way. After deleting such 

points, the number of data points has been reduced from 79,427 to 68,135. 

 

[2.3.3. Data points with abnormal magnitude of energy use] 

Data points with unusually low or high energy use relative to other buildings with similar size 

may have a noticeable impact on the model coefficients, resulting in estimates of the coefficients 

far from its true value. Such points are often called the influential points, and the red hollow circles 

in Figure 2 are the points that are suspected to be influential points. The cause of such influential 

points may be measurement error, or unusual type of buildings (for example, energy use records 

of subway stations were found to be very high relative to the floor area of the station).  

A common approach to find influential points is to compute Cook’s distance of every 𝑖𝑖th point, 

which is a measure of the squared distance between the estimated coefficient vector based on all 

points and the estimated coefficient vector obtained by deleting 𝑖𝑖th point [24]. Cook’s distance 

for 𝑖𝑖th point can be computed as in Equation 3. 

𝐷𝐷𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 =

�𝛽𝛽�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚−𝛽𝛽�−𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚�

𝑇𝑇
𝑋𝑋𝑇𝑇𝑋𝑋�𝛽𝛽�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚−𝛽𝛽�−𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚�

𝑘𝑘∙𝑀𝑀𝑀𝑀𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = 𝜖𝜖�𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚ℎ𝑖𝑖𝑖𝑖

𝑘𝑘∙𝑀𝑀𝑀𝑀𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚(1−ℎ𝑖𝑖𝑖𝑖)2
   (3) 



where �̂�𝛽−𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚  is the estimates of coefficients obtained by deleting 𝑖𝑖 th point, 𝑘𝑘  is number of 

coefficients (6 in this study), 𝑀𝑀𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = 𝑆𝑆𝑆𝑆𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚/(𝑁𝑁 − 𝑘𝑘) is the regression mean square of the 

model containing all points, and ℎ𝑖𝑖𝑖𝑖 is 𝑖𝑖th diagonal element of 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇. It is not required to 

solve ordinary least squares problem 𝑁𝑁 + 1 times to obtain Cook’s distance of every point. By 

the term in the right side of equation 2, Cook’s distance of every point can be obtained by one 

computation of 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇 and solving ordinary least squares problem once. 

Computation of Cook’s distance have been applied to each subset of Table 1 since computation 

of Cook’s distance requires regression models which are fitted for each of the subsets separately. 

For each subset, 𝐷𝐷𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = max�𝐷𝐷𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1,⋯ ,𝐷𝐷𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,12�  is computed for every point. Then, the point 

which corresponds to the highest value of 𝐷𝐷𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is deleted because at least one of 12 monthly 

electricity uses in the corresponding building is abnormal in magnitude. This procedure is 

repeated until a pre-determined number of points are deleted from the dataset. If the subset is 

the set of buildings using gas, then buildings with abnormal monthly gas use in magnitude are 

also deleted, following the same procedure. In this study, the number of points to be deleted from 

each subset by this procedure has been pre-determined as two percent of the data points in the 

subset. 

 

[3. Estimation of moment conditions] 

 

[3.1. Estimation based on linear regression models] 

To establish a joint probability model for monthly energy uses of a certain building given its 

features (floor area, number of stories, and approval year in this study) covariance between the 

error terms of two different regression models should be investigated. The linear regression 

model for electricity use in 𝑚𝑚th month can be written in pointwise form as Equation 4. 

𝑦𝑦𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 = 𝛽𝛽0

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 + 𝛽𝛽1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 + 𝛽𝛽2

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑥𝑥𝑖𝑖
𝑔𝑔𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠 + 𝛽𝛽3

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔𝑥𝑥𝑖𝑖
𝑔𝑔𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠 + 𝛽𝛽4

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑥𝑥𝑖𝑖
𝑠𝑠𝑒𝑒𝑔𝑔𝑎𝑎 + 𝛽𝛽5

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔𝑥𝑥𝑖𝑖
𝑠𝑠𝑒𝑒𝑔𝑔𝑎𝑎 +

𝜖𝜖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚           (4) 

Then, 𝜖𝜖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 and 𝜖𝜖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2 are expected to be positively correlated because a building which uses 

more electricity in January compared to other buildings with similar size is expected to use more 

electricity in February compared to other buildings with similar size as well. Meanwhile, 𝜖𝜖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 

and 𝜖𝜖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔,1 are expected to be negatively correlated because electricity and gas are substitutes for 

heating in winter. 



A common approach to estimate coefficients of many linear regression models simultaneously 

considering covariance between error terms of these regression models is Seemingly Unrelated 

Regression (SUR) [25]. SUR aggregates all of 24 regression models (12 for electricity, and 12 for 

gas) to make a combined regression model, as shown in matrix form in Equation 5. 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑦𝑦

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1

𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2

⋮
𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,12

𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔,1

⋮
𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔,12⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑋𝑋

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 0 ⋯ 0 0 ⋯ 0
0 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,12 0 ⋯ 0
0 0 ⋯ 0 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔,1 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0 0 ⋯ 𝑋𝑋𝑔𝑔𝑔𝑔𝑔𝑔,12⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝛽𝛽

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1

𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2

⋮
𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,12

𝛽𝛽𝑔𝑔𝑔𝑔𝑔𝑔,1

⋮
𝛽𝛽𝑔𝑔𝑔𝑔𝑔𝑔,12⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝜖𝜖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1

𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2

⋮
𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,12

𝜖𝜖𝑔𝑔𝑔𝑔𝑔𝑔,1

⋮
𝜖𝜖𝑔𝑔𝑔𝑔𝑔𝑔,12⎦

⎥
⎥
⎥
⎥
⎥
⎤

    (5) 

By solving generalized least squares problem for Equation 5, estimates of coefficients with 

consideration of covariance between error terms can be obtained. However, solving generalized 

least squares problem is more complicated than solving ordinary least squares problem because 

the exact structure of covariance is generally not known before solving. 

 �̂�𝛽0
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 �̂�𝛽1

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 �̂�𝛽2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 �̂�𝛽3

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 �̂�𝛽4
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 �̂�𝛽5

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 𝜎𝜎�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 

JAN -166973 459.3 -668.8 -0.01 83.66 -0.22 6919 

FEB -112161 408.1 -558.9 -0.03 56.20 -0.20 6464 

MAR -82987 302.0 -400.1 -0.01 41.54 -0.15 4932 

APR -7807 203.3 -285.5 -0.01 3.99 -0.10 4441 

MAY -1387 171.8 -251.4 -0.01 0.78 -0.08 4293 

JUN -3867 197.7 -324.2 -0.01 2.03 -0.09 5059 

JUL -30814 263.3 -434.4 0.00 15.53 -0.13 6114 

AUG -7230 280.5 -454.8 0.02 3.87 -0.13 6966 

SEP 32561 195.4 -348.8 -0.03 -16.08 -0.09 5857 

OCT 57325 122.4 -242.2 -0.04 -28.56 -0.06 4864 

NOV -16933 203.4 -283.3 -0.02 8.47 -0.10 4661 

DEC -124909 357.1 -491.2 0.02 62.56 -0.17 5534 

Table 5. Estimates of coefficients and standard error of the 12 regression models for monthly electricity 

uses, fitted for the subset of office buildings with floor area under 3,000 m2 using gas. 

 

 

 

 

 



 �̂�𝛽0
𝑔𝑔𝑔𝑔𝑔𝑔,𝑚𝑚 �̂�𝛽1

𝑔𝑔𝑔𝑔𝑔𝑔,𝑚𝑚 �̂�𝛽2
𝑔𝑔𝑔𝑔𝑔𝑔,𝑚𝑚 �̂�𝛽3

𝑔𝑔𝑔𝑔𝑔𝑔,𝑚𝑚 �̂�𝛽4
𝑔𝑔𝑔𝑔𝑔𝑔,𝑚𝑚 �̂�𝛽5

𝑔𝑔𝑔𝑔𝑔𝑔,𝑚𝑚 𝜎𝜎�𝑔𝑔𝑔𝑔𝑔𝑔,𝑚𝑚 

JAN 456067 -572.0 1145.6 0.33 -225.82 0.29 12966 

FEB 357337 -375.8 900.4 0.27 -177.03 0.19 10889 

MAR 273736 -273.7 749.6 0.09 -136.17 0.14 8254 

APR 199869 -202.7 424.0 0.06 -99.26 0.10 5898 

MAY 224357 -207.1 351.9 -0.03 -111.95 0.10 4249 

JUN 183681 -153.8 196.0 -0.05 -91.77 0.08 3591 

JUL 131569 -67.9 112.0 -0.05 -65.74 0.04 3204 

AUG 175755 -139.1 111.9 -0.03 -87.84 0.07 3069 

SEP 129230 -73.7 91.3 -0.04 -64.48 0.04 2974 

OCT 231163 -236.7 208.8 -0.04 -115.08 0.12 4291 

NOV 267671 -309.8 536.8 0.04 -132.65 0.16 6897 

DEC 325000 -410.1 693.7 0.22 -160.42 0.21 10102 

Table 6. Estimates of coefficients and standard error of the 12 regression models for monthly gas uses, fitted 

for the subset of office buildings with floor area under 3,000 m2 using gas. 

 

Fortunately, the generalized least squares estimators of SUR in this study is equivalent to the 

ordinary least squares estimators of each of the 24 regression models obtained separately, 

because all 24 models contain the same set of explanatory variables [25]. For example, Tables 5 

and 6 shows the estimates of coefficients and standard error of the 24 models for the subset of 

2,326 office buildings with floor area under 3,000 m2 using gas, obtained by solving least squares 

of each of 24 regression models separately. Given the floor area and number of stories of a certain 

office building with floor area under 3,000 m2 using gas, the mean vector of monthly energy use 

in the building can be determined by the estimates of coefficients. For other subsets, different 

estimates of coefficients would be obtained. 

Covariance and correlation between error terms of different regression models can be 

estimated by computation of sample covariance matrix and sample correlation matrix of the 

residuals. Table 5 shows the sample correlation matrix of error terms of the 24 models for the 

subset of office buildings with floor area under 3,000 m2 using gas. Table 7(a) shows that error 

terms corresponding to electricity use in different months are strongly positively correlated, even 

when the effects of size, height, and age of buildings have been controlled. This result supports 

the expectation on positive correlation between 𝜖𝜖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 and 𝜖𝜖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2. Table 7(b) shows that error 

terms corresponding to gas use in adjacent different months are also strongly positively 

correlated. Table 7(c) shows that error terms corresponding to electricity use and gas use in 

winter are negatively correlated. This result supports the expectation on negative correlation 



between 𝜖𝜖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 and 𝜖𝜖𝑖𝑖

𝑔𝑔𝑔𝑔𝑔𝑔,1. 

 

(a) JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

JAN 1.000 0.967 0.952 0.873 0.820 0.822 0.819 0.797 0.787 0.782 0.851 0.927 

FEB 0.967 1.000 0.975 0.893 0.828 0.816 0.808 0.810 0.815 0.800 0.848 0.911 

MAR 0.952 0.975 1.000 0.950 0.894 0.875 0.861 0.860 0.866 0.859 0.898 0.931 

APR 0.873 0.893 0.950 1.000 0.977 0.950 0.920 0.917 0.929 0.936 0.950 0.915 

MAY 0.820 0.828 0.894 0.977 1.000 0.980 0.945 0.928 0.936 0.955 0.959 0.897 

JUN 0.822 0.816 0.875 0.950 0.980 1.000 0.979 0.947 0.941 0.954 0.956 0.904 

JUL 0.819 0.808 0.861 0.920 0.945 0.979 1.000 0.963 0.940 0.938 0.933 0.897 

AUG 0.797 0.810 0.860 0.917 0.928 0.947 0.963 1.000 0.973 0.951 0.920 0.871 

SEP 0.787 0.815 0.866 0.929 0.936 0.941 0.940 0.973 1.000 0.977 0.937 0.873 

OCT 0.782 0.800 0.859 0.936 0.955 0.954 0.938 0.951 0.977 1.000 0.964 0.887 

NOV 0.851 0.848 0.898 0.950 0.959 0.956 0.933 0.920 0.937 0.964 1.000 0.955 

DEC 0.927 0.911 0.931 0.915 0.897 0.904 0.897 0.871 0.873 0.887 0.955 1.000 

(b) JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

JAN 1.000 0.924 0.819 0.718 0.607 0.451 0.319 0.349 0.338 0.516 0.759 0.878 

FEB 0.924 1.000 0.894 0.817 0.686 0.527 0.373 0.401 0.371 0.470 0.672 0.792 

MAR 0.819 0.894 1.000 0.895 0.780 0.637 0.471 0.502 0.443 0.441 0.564 0.670 

APR 0.718 0.817 0.895 1.000 0.912 0.808 0.660 0.661 0.627 0.584 0.611 0.636 

MAY 0.607 0.686 0.780 0.912 1.000 0.907 0.756 0.785 0.727 0.665 0.612 0.572 

JUN 0.451 0.527 0.637 0.808 0.907 1.000 0.873 0.890 0.852 0.708 0.564 0.476 

JUL 0.319 0.373 0.471 0.660 0.756 0.873 1.000 0.730 0.959 0.603 0.525 0.405 

AUG 0.349 0.401 0.502 0.661 0.785 0.890 0.730 1.000 0.732 0.767 0.487 0.397 

SEP 0.338 0.371 0.443 0.627 0.727 0.852 0.959 0.732 1.000 0.681 0.603 0.466 

OCT 0.516 0.470 0.441 0.584 0.665 0.708 0.603 0.767 0.681 1.000 0.815 0.713 

NOV 0.759 0.672 0.564 0.611 0.612 0.564 0.525 0.487 0.603 0.815 1.000 0.920 

DEC 0.878 0.792 0.670 0.636 0.572 0.476 0.405 0.397 0.466 0.713 0.920 1.000 

(c) JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

JAN -0.343 -0.309 -0.226 -0.150 -0.088 0.037 0.123 0.093 0.112 -0.048 -0.209 -0.291 

FEB -0.336 -0.301 -0.218 -0.149 -0.086 0.040 0.124 0.096 0.109 -0.058 -0.213 -0.288 

MAR -0.259 -0.224 -0.145 -0.084 -0.035 0.073 0.149 0.118 0.132 -0.017 -0.152 -0.218 

APR -0.124 -0.097 -0.028 0.014 0.051 0.138 0.191 0.169 0.175 0.053 -0.045 -0.095 

MAY -0.062 -0.037 0.028 0.070 0.107 0.188 0.224 0.206 0.209 0.099 0.013 -0.038 

JUN -0.068 -0.041 0.023 0.068 0.107 0.199 0.236 0.217 0.224 0.108 0.013 -0.039 

JUL -0.056 -0.030 0.035 0.072 0.110 0.207 0.249 0.230 0.233 0.111 0.016 -0.028 

AUG -0.019 0.006 0.063 0.097 0.133 0.228 0.267 0.246 0.253 0.125 0.043 0.007 

SEP -0.038 -0.014 0.044 0.082 0.116 0.207 0.250 0.223 0.239 0.103 0.024 -0.015 

OCT -0.028 -0.006 0.053 0.099 0.137 0.219 0.251 0.230 0.245 0.129 0.047 0.000 

NOV -0.111 -0.083 -0.014 0.035 0.075 0.165 0.210 0.190 0.198 0.075 -0.023 -0.081 

DEC -0.255 -0.223 -0.142 -0.077 -0.019 0.098 0.163 0.137 0.152 0.004 -0.133 -0.210 

Table 7. Sample correlation matrix for the residuals of the linear regression models for the subset of office 

buildings with floor area under 3,000 m2 using gas ((a): between 𝜖𝜖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝 and 𝜖𝜖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑞𝑞 , (b): between 𝜖𝜖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔,𝑝𝑝 and 

𝜖𝜖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔,𝑞𝑞 , (c): between 𝜖𝜖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝 (row) and 𝜖𝜖𝑖𝑖
𝑔𝑔𝑔𝑔𝑔𝑔,𝑞𝑞 (column), where 𝑝𝑝 and 𝑞𝑞 are month indices). 



[3.2. Issues of non-constant covariance (heteroskedasticity)] 

In Section 3.1, constant variance and covariance of error terms in each model has been assumed. 

If this assumption is violated, the estimation of covariance matrix based on as presented in Section 

3.1 becomes invalid. Thus, it should be checked whether the variance and covariance are constant 

with all explanatory variables (homoscedastic) or they vary with at least one varying explanatory 

variable (heteroskedastic). 

 

[3.2.1. Existence of heteroskedasticity] 

Figure 4, the residual plot, shows that variance of monthly energy use is not constant but 

increasing with increasing floor area. This heteroskedasticity has not been considered for 

obtaining sample covariance matrix in Section 3.1. Assuming homoskedasticity, the grey regions 

in Figure 4 represent the bands of 𝑥𝑥𝑖𝑖𝑇𝑇�̂�𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 ± 2.58𝜎𝜎�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 and 𝑥𝑥𝑖𝑖𝑇𝑇�̂�𝛽𝑔𝑔𝑔𝑔𝑔𝑔,1 ± 2.58𝜎𝜎�𝑔𝑔𝑔𝑔𝑔𝑔,1, where 𝜎𝜎�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 is 

the constant standard error of the regression model corresponding to electricity use in January. 

The band includes the region of large magnitude of residual with small floor area (depicted as 

dashed triangles), where there are few data points located in that region.  

 
Figure 4. Residual plots for the linear regression model corresponding to energy uses in January, for the 

subset of office buildings with floor area under 3,000 m2 using gas (Left: electricity, Right: gas). The grey 

areas denote the bands of 𝑥𝑥𝑖𝑖𝑇𝑇�̂�𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 ± 2.58𝜎𝜎�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 and 𝑥𝑥𝑖𝑖𝑇𝑇�̂�𝛽𝑔𝑔𝑔𝑔𝑔𝑔,1 ± 2.58𝜎𝜎�𝑔𝑔𝑔𝑔𝑔𝑔,1,which capture heteroskedasticity 

of data poorly. The dashed triangles denote the region that the band includes but actual points are not 

located. 

 

Thus, variance of energy use in small buildings will be overestimated so that unrealistically 

small or large amount of energy use can be sampled from the joint probability model based on 

assumption of constant variance. In contrast, variance of energy use in large buildings will be 



underestimated. Despite of such problem, issue of heteroskedasticity has not been considered in 

the previous studies on statistical estimation of building energy use. The structure of 

heteroskedasticity should be modeled to correct the estimation of covariance and to make a 

correct joint probability model. 

 

[3.2.2. Heteroskedasticity modeling] 

A common approach to estimate structure of heteroskedasticity in a linear regression model is 

to make an auxiliary regression model, where the response variable is the squared residual, and 

the explanatory variables are first and second order terms of explanatory variables which causes 

heteroskedasticity (floor area in this study) [26]. For the regression model corresponding to 

electricity use in 𝑝𝑝th month, the auxiliary regression model can be set up as in Equation 6. 

�𝜖𝜖�̂�𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝�

2
= 𝛼𝛼0

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝 + 𝛼𝛼1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 + 𝛼𝛼2

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝(𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2 + 𝑣𝑣𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝   (6) 

where 𝑣𝑣𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝  is the error term of the auxiliary model. By estimation of the coefficients of the 

auxiliary model, variance can be estimated as a function of 𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔, as in Equation 7. 

(𝜎𝜎�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝)2 =  𝛼𝛼�0
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝 +  𝛼𝛼�1

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 +  𝛼𝛼�2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝(𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2   (7) 

where (𝜎𝜎�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝)2  denotes the estimate of error variance, and 𝛼𝛼�0
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝 , 𝛼𝛼�1

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝 , 𝛼𝛼�2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝  denote the 

estimate of coefficients of the auxiliary model. (𝜎𝜎�𝑔𝑔𝑔𝑔𝑔𝑔,𝑝𝑝)2 as the function of floor area can also be 

obtained in the same way. 

The explained approach can be extended to estimate the heteroskedasticity structure of 

covariance between error terms of two different regression models as a function of the 

explanatory variables [27]. For the two regression models corresponding to electricity uses in 

𝑝𝑝th and 𝑞𝑞th months, the auxiliary regression model can be set up as in Equations 8 and 9. 

𝜖𝜖�̂�𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝𝜖𝜖�̂�𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑞𝑞 = 𝛼𝛼0
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,(𝑝𝑝,𝑞𝑞) + 𝛼𝛼1

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,(𝑝𝑝,𝑞𝑞)𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 + 𝛼𝛼2
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,(𝑝𝑝,𝑞𝑞)(𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2 + 𝑣𝑣𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,(𝑝𝑝,𝑞𝑞)   (8) 

𝜎𝜎�(𝑝𝑝,𝑞𝑞)
𝑒𝑒,𝑒𝑒 =  𝛼𝛼�0

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,(𝑝𝑝,𝑞𝑞)  +  𝛼𝛼�1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,(𝑝𝑝,𝑞𝑞) 𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 +  𝛼𝛼�2

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,(𝑝𝑝,𝑞𝑞) (𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2   (9) 

where 𝜎𝜎�(𝑝𝑝,𝑝𝑝)
𝑒𝑒,𝑒𝑒 = (𝜎𝜎�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝)2  and 𝑒𝑒  in the superscript denotes electricity. 𝜎𝜎�(𝑝𝑝,𝑞𝑞)

𝑔𝑔,𝑔𝑔   and 𝜎𝜎�(𝑝𝑝,𝑞𝑞)
𝑒𝑒,𝑔𝑔   can also 

be obtained in the same way (where 𝑔𝑔 in the superscript denotes gas). 

However, estimate of covariance by Equation 9 may produce unrealistic value of covariance, 

such as negative variance and negative correlation between error terms of regression models 

corresponding to electricity use in January and February. For the subset of office buildings with 

floor area under 3,000 m2 using gas, the variance of 𝜖𝜖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 and covariance between 𝜖𝜖𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 and 



𝜖𝜖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2  have been estimated as 𝜎𝜎�(1,1)

𝑒𝑒,𝑒𝑒 = −39278300 + 75969𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 − 5.99(𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2  and 𝜎𝜎�(1,2)
𝑒𝑒,𝑒𝑒 =

−35607600 + 70291𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 − 6.37(𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2, respectively. Both estimates become negative if 𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔 is 

lower than about 500 m2, which are practically positive but incorrectly estimated. 

To prevent unrealistic estimation of covariance by change of sign, Equations 8 and 9 have been 

modified to contain only the second order term of floor area in the right side, as in Equations 10 

and 11. 

𝜖𝜖�̂�𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝𝜖𝜖�̂�𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑞𝑞 = 𝛼𝛼(𝑝𝑝,𝑞𝑞)
𝑒𝑒,𝑒𝑒 (𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2 + 𝑣𝑣(𝑝𝑝,𝑞𝑞),𝑖𝑖

𝑒𝑒,𝑒𝑒     (10) 

𝜎𝜎�(𝑝𝑝,𝑞𝑞)
𝑒𝑒,𝑒𝑒 =   𝛼𝛼�(𝑝𝑝,𝑞𝑞)

𝑒𝑒,𝑒𝑒  (𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2   (11) 

The estimate of covariance matrix, constructed by aggregation of all estimates of covariance 

computed by Equation 11, is generally not positive semidefinite. However, a covariance matrix 

must be positive semidefinite by its properties. Thus, a positive semidefinite matrix nearest to the 

estimate of covariance matrix should be computed to be used as the covariance of the joint 

probability model of monthly energy uses. 

The nearest positive semidefinite matrix can be obtained by eigen-decomposition. Denote the 

estimate of covariance matrix obtained by Equation 11 as Σ� . Σ�  is generally not positive 

semidefinite, but it is real-valued and symmetric. Thus, it can be decomposed as Σ� = 𝑉𝑉𝐷𝐷𝑉𝑉𝑇𝑇 where 

𝑉𝑉 is a square matrix containing eigenvectors of Σ� as its columns, and 𝐷𝐷 is a diagonal matrix 

containing eigenvalues of Σ�  as its diagonal elements. Defining a new matrix 𝐷𝐷+  which is 

obtained by replacing negative elements of 𝐷𝐷  with zeros, the nearest positive semidefinite 

matrix Σ�+  can be computed as Σ�+ = 𝑉𝑉𝐷𝐷+𝑉𝑉𝑇𝑇 . Then, Σ�+  is used as the covariance matrix of the 

joint probability model for monthly energy uses. Table 8 shows the values of elements in Σ�+ for 

unit floor area, for the subset of office buildings with floor area under 3,000 m2 using gas. The 

covariance matrix of the vector of monthly energy uses for a certain office building under 3,000 

m2 using gas can be obtained by multiplication of square of its floor area with the elements in 

Table 7. For other subsets, different estimates of covariance matrix would be obtained. 

 

 

 

 

 



(a) JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

JAN 20.09 17.95 13.43 10.79 9.75 11.64 14.04 15.64 12.98 10.65 11.25 14.90 

FEB 17.95 17.16 12.68 10.22 9.13 10.75 12.87 14.86 12.54 10.16 10.43 13.55 

MAR 13.43 12.68 9.91 8.28 7.51 8.77 10.45 11.99 10.12 8.29 8.40 10.53 

APR 10.79 10.22 8.28 7.66 7.19 8.33 9.77 11.24 9.52 7.93 7.79 9.03 

MAY 9.75 9.13 7.51 7.19 7.08 8.25 9.64 10.93 9.22 7.79 7.56 8.50 

JUN 11.64 10.75 8.77 8.33 8.25 10.03 11.93 13.30 11.08 9.24 8.96 10.19 

JUL 14.04 12.87 10.45 9.77 9.64 11.93 14.88 16.48 13.46 11.00 10.57 12.24 

AUG 15.64 14.86 11.99 11.24 10.93 13.30 16.48 19.81 16.13 12.91 12.00 13.62 

SEP 12.98 12.54 10.12 9.52 9.22 11.08 13.46 16.13 13.89 11.11 10.27 11.48 

OCT 10.65 10.16 8.29 7.93 7.79 9.24 11.00 12.91 11.11 9.40 8.72 9.63 

NOV 11.25 10.43 8.40 7.79 7.56 8.96 10.57 12.00 10.27 8.72 8.77 10.07 

DEC 14.90 13.55 10.53 9.03 8.50 10.19 12.24 13.62 11.48 9.63 10.07 12.78 

(b) JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

JAN 67.19 52.25 34.19 21.11 12.65 7.77 4.75 4.92 4.79 10.62 26.61 45.54 

FEB 52.25 48.07 32.40 20.95 12.41 8.01 4.90 5.07 4.53 8.10 19.43 34.08 

MAR 34.19 32.40 27.17 17.25 10.65 7.24 4.61 4.71 4.01 5.58 11.95 21.26 

APR 21.11 20.95 17.25 13.78 8.84 6.57 4.69 4.47 4.12 5.34 9.09 13.99 

MAY 12.65 12.41 10.65 8.84 6.91 5.21 3.77 3.79 3.38 4.37 6.47 8.91 

JUN 7.77 8.01 7.24 6.57 5.21 4.87 3.71 3.64 3.38 3.98 5.06 6.21 

JUL 4.75 4.90 4.61 4.69 3.77 3.71 3.86 2.51 3.44 2.92 4.23 4.75 

AUG 4.92 5.07 4.71 4.47 3.79 3.64 2.51 3.54 2.38 3.73 3.62 4.25 

SEP 4.79 4.53 4.01 4.12 3.38 3.38 3.44 2.38 3.36 3.18 4.63 5.23 

OCT 10.62 8.10 5.58 5.34 4.37 3.98 2.92 3.73 3.18 6.88 9.02 11.62 

NOV 26.61 19.43 11.95 9.09 6.47 5.06 4.23 3.62 4.63 9.02 18.54 25.27 

DEC 45.54 34.08 21.26 13.99 8.91 6.21 4.75 4.25 5.23 11.62 25.27 40.70 

(c) JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

JAN -14.72 -11.42 -6.88 -3.58 -1.83 -0.23 0.57 0.31 0.52 -1.17 -4.91 -10.06 

FEB -13.15 -10.23 -6.17 -3.24 -1.61 -0.11 0.61 0.38 0.53 -1.09 -4.49 -9.03 

MAR -7.91 -6.01 -3.43 -1.71 -0.82 0.13 0.58 0.40 0.49 -0.51 -2.56 -5.42 

APR -3.69 -2.67 -1.20 -0.45 -0.08 0.51 0.73 0.61 0.64 0.06 -0.95 -2.49 

MAY -2.05 -1.31 -0.25 0.22 0.37 0.83 0.90 0.81 0.80 0.38 -0.26 -1.40 

JUN -2.69 -1.69 -0.44 0.19 0.39 1.02 1.11 1.01 0.99 0.47 -0.39 -1.75 

JUL -2.98 -1.80 -0.42 0.14 0.39 1.21 1.37 1.22 1.19 0.49 -0.50 -1.90 

AUG -2.20 -1.15 -0.04 0.49 0.66 1.60 1.73 1.51 1.57 0.75 -0.03 -1.19 

SEP -2.57 -1.56 -0.41 0.23 0.43 1.20 1.31 1.18 1.22 0.48 -0.37 -1.62 

OCT -1.63 -0.94 -0.01 0.52 0.62 1.13 1.13 1.06 1.07 0.65 0.06 -0.99 

NOV -3.76 -2.59 -1.05 -0.21 0.12 0.74 0.87 0.79 0.79 0.20 -0.86 -2.61 

DEC -8.94 -6.76 -3.73 -1.82 -0.79 0.32 0.71 0.55 0.64 -0.47 -2.77 -6.15 

Table 8. Estimates of coefficients of squared floor area for estimation of covariance as a function of floor 

area ((a): 𝛼𝛼�(𝑝𝑝,𝑞𝑞)+
𝑒𝑒,𝑒𝑒  , (b): 𝛼𝛼�(𝑝𝑝,𝑞𝑞)+

𝑔𝑔,𝑔𝑔  , (c): 𝛼𝛼�(𝑝𝑝,𝑞𝑞)+
𝑒𝑒,𝑔𝑔  ). +  in the subscript emphasizes that the resulting covariance 

matrix is positive semidefinite. 

 

 



Figure 5 shows that the estimates of covariance from Σ�+ represents the heteroskedasticity of 

the data well. Adding a subscript +  which emphasizes that the covariance matrix is positive 

semidefinite, the modified bands 𝑥𝑥𝑖𝑖𝑇𝑇�̂�𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 ± 2.58𝛼𝛼�(1,1)+
𝑒𝑒,𝑒𝑒  (𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2 and 𝑥𝑥𝑖𝑖𝑇𝑇�̂�𝛽𝑔𝑔𝑔𝑔𝑔𝑔,1 ± 2.58𝛼𝛼�(1,1)+

𝑔𝑔,𝑔𝑔  (𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2 

(depicted as grey areas) capture the increasing variance well while they do not contain regions 

where no data point is located. 

 

 

Figure 5. Residual plots for the linear regression model corresponding to energy uses in January, for the 

subset of office buildings with floor area under 3,000 m2 using gas (Left: electricity, Right: gas). The grey 

areas denote the modified band of 𝑥𝑥𝑖𝑖𝑇𝑇�̂�𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1 ± 2.58𝛼𝛼�(1,1)
𝑒𝑒,𝑒𝑒  (𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2  and 𝑥𝑥𝑖𝑖𝑇𝑇�̂�𝛽𝑔𝑔𝑔𝑔𝑔𝑔,1 ± 2.58𝛼𝛼�(1,1)

𝑔𝑔,𝑔𝑔  (𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2 , which 

capture heteroskedasticity of data well. 

 

[4. Joint probability model] 

 

[4.1. Multivariate normal distribution of monthly energy usage] 

A multivariate normal distribution for monthly electricity and gas uses for a year can be defined 

based on the mean vector and covariance matrix of monthly energy uses in a building obtained 

by the procedure presented in Section 3, conditional on the features of the building (floor area, 

number of stories, and approval year of the building), as Equation 12. 
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where MVN is the abbreviation of multivariate normal. The covariance matrix of the distribution 

contains (𝑥𝑥𝑖𝑖𝑔𝑔𝑎𝑎𝑒𝑒𝑔𝑔)2 , meaning reflection of heteroskedasticity. There are two advantages of 

multivariate normal distribution – i) it is one of the simplest multivariate distributions for model 

construction, interpretation, maintenance, and sampling; and ii) it provides reasonable fit to near-

symmetric data with high variance, which is the case of this study (Figure 6). 

 

Figure 6. Empirical distribution of residuals from the linear regression model corresponding to electricity 

use in January, for the subset of office buildings with floor area under 3,000 m2 using gas. The distribution 

is bell-shaped and the mode of the distribution is close to zero, which means that approximate normal 

distribution is applicable to this data. 

 

Figure 7 shows some samples of monthly energy use for one year drawn from the multivariate 

normal distribution fitted for the subset of office buildings using gas, conditional on floor area 

1,500 m2, seven stories, approved for use in 2000, which show reasonable seasonal patterns of 

energy use. The key to success in reflection of seasonality in monthly energy use is consideration 

of covariance between energy uses in different months or different energy types, which was not 

considered in previous studies. If the covariance is ignored, then samples drawn from the 

distribution which assumes independency of energy uses in different months or different energy 

types will show unrealistic seasonal patterns. Figure 8 shows some samples drawn from a 

different distribution with modified covariance matrix where its off-diagonal elements were 

replaced with zero. The samples show unrealistic seasonal patterns. Meanwhile, the magnitudes 

of energy use of the samples in Figure 7 are different to each other due to inevitable high variance 

nature of the data. 



 

Figure 7. Four samples of monthly energy use for one year drawn from the multivariate normal distribution 

fitted for the subset of office buildings using gas, conditional on floor area 1,500 m2, seven stories, approved 

for use in 2000. The samples show realistic seasonal patterns. 

 

 

Figure 8. Two samples of monthly energy use for one year drawn from an alternative multivariate normal 

distribution with modified covariance matrix where its off-diagonal elements were replaced with zero. The 

samples show volatile and unrealistic seasonal patterns. 

 

To obtain reasonable samples, a post-processing is required because a number of samples may 

show unrealistic seasonal patterns. Denote the monthly electricity use for a year in a sample 



drawn from the multivariate normal distribution as 𝑦𝑦0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . Then, dividing it into its absolute value 

norm as 𝑦𝑦�0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑦𝑦0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/�𝑦𝑦0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�1 , the quantity (𝑦𝑦�0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)𝑇𝑇 ��𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�
𝑇𝑇𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�

−1
𝑦𝑦�0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  can be computed (as 

similarly done in Section 2.3.2), where 𝑌𝑌�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   multiplied with 𝑦𝑦�0𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is the matrix composed of 

data preserved after pre-processing in Section 2.3.2. Samples with the quantity over a threshold 

(2𝑘𝑘/𝑁𝑁 in this study, but it can be adjusted by the user) are deleted. In a numerical experiment for 

the case of office building using gas with floor area 1,500 m2 of floor area and seven stories, about 

61% of initially drawn samples are preserved after the post-processing. On the contrary, when 

the post-processing is applied to the samples from the different distribution with ignorance of 

covariance between error terms for different months, none of the samples are preserved. 

 

[4.2. Application to data correction] 

In practice, some values in the record of monthly energy use in a building may be missing or 

incorrect. Figure 9 shows screenshots of some rows in the database of monthly energy use, which 

have missing or abnormally low values. If there is a method of filling the missing values or 

replacing unusual values with reasonable alternative values, it would help enhance data quality 

of the energy use record. However, models in previous studies with ignorance of covariance or 

simplified time-series models cannot be used for such task of data correction. 

 

Figure 9. Screenshots of some rows in the dataset of monthly energy use, containing missing or abnormally 

low values. 

 

The joint probability model introduced in Section 4.1 can be used for data correction, based on 

the conditional multivariate normal distribution where the energy use in month with correct 

values in the record are assumed to be fixed. For a random vector variable 𝑧𝑧 = [𝑧𝑧1𝑇𝑇,  𝑧𝑧2𝑇𝑇]𝑇𝑇 following 

multivariate normal distribution where 𝑧𝑧2 has been fixed to be 𝑎𝑎, the conditional multivariate 

normal distribution of 𝑧𝑧1 can be expressed as Equation 13. 



�
𝑧𝑧1
𝑧𝑧2�~𝑀𝑀𝑉𝑉𝑁𝑁 ��

𝜇𝜇1
𝜇𝜇2� , �Σ11 Σ12

Σ21 Σ22
��  ⇒  𝑃𝑃(𝑧𝑧1|𝑧𝑧2 = 𝑎𝑎) = 𝑀𝑀𝑉𝑉𝑁𝑁(𝜇𝜇1 + Σ12Σ22−1(𝑎𝑎 − 𝜇𝜇2),Σ11 − Σ12Σ22−1Σ21)   (13) 

If 𝑧𝑧 is monthly electricity use for a year in a target building where electricity use values for some 

months 𝑧𝑧2 are correct to be 𝑎𝑎 but the values for the other months 𝑧𝑧1 are missing or incorrect, 

the parameters 𝜇𝜇1, 𝜇𝜇2, Σ11, Σ12, Σ21, Σ22 become the electricity part of the mean and covariance 

the joint probability model in Equation 12. The mean of the conditional multivariate normal 

distribution 𝜇𝜇1 + Σ12Σ22−1(𝑎𝑎 − 𝜇𝜇2)  can be used as the alternative values for filling the missing 

values or replacing the incorrect values. 

 

Figure 10. Actual monthly energy use in an exemplary building (connected curve) and estimation of the 

energy use by the conditional multivariate normal distribution (circles and squares), where the estimation 

for each group of different marker types has been computed based on assumption of missing values in the 

corresponding months (Left: electricity, Right: gas). 

 

Figure 10 shows that the mean of the conditional multivariate normal distribution in Equation 

13 produces reasonable alternative values. The curve denotes the actual recorded monthly energy 

use in the exemplary building with known floor area, number of stories and approval year. The 

circles denote the estimation of energy uses equal to the mean of the conditional multivariate 

normal distribution, assumed that the energy use record of the months corresponding to the 

circles (February, July, and October) are missing while record of the other months are available. 

The squares have the similar meaning as circles (assumed missing values in October, November, 

and December). The case of squares can be viewed as prediction of monthly energy use since the 

values of last three months are assumed to be missing and estimated given the energy use of 

preceding months. For electricity, the estimated values are quite close to the actual record. For 

gas, although the estimated values are a little deviated from the actual record due to the high 

variance of gas data, the new data generated by replacing the estimated values shows realistic 

seasonal pattern. 



[5. Summary] 

 

This study provides a statistical method to model the ‘joint’ probability distribution of ‘monthly’ 

electricity and gas uses for a year in individual urban buildings, conditional on the feature of the 

buildings. The process has been summarized as below: 

i) Pre-process the database of monthly energy use and building features. Data points with missing 

values, or abnormal seasonal pattern of monthly energy use, or abnormal magnitude of energy 

use have been deleted. Points with abnormal seasonal pattern have been identified by a method 

which quantifies remoteness of each point from the cluster of the points applied to a transformed 

dataset. Points with abnormal magnitude of energy use have been identified by computation of 

Cook’s distance. 

ii) For each subset of database (divided with respect to building use, floor area interval, use of 

gas), fit individual linear regression models. The response variable of each regression model is 

electricity or gas use in each month of buildings. In this study, the selected explanatory variables 

are floor area, number of stories, and approval year for use of buildings. Obtain the estimates of 

coefficients and residuals of the regression models. 

iii) Establish auxiliary regression models to estimate the covariance of the errors as an increasing 

function of increasing floor area (in other words, estimate the structure of heteroskedasticity in 

the data). The response variable is multiplication of two residuals, each from regression models 

corresponding to the same or different months or energy types. The only explanatory variable is 

the square of floor area (no intercept). Transform the obtained estimate of covariance matrix into 

its nearest positive semidefinite matrix. 

iv) Define a multivariate normal distribution conditional on the features of a building, where its 

mean vector is computed based on the estimates of coefficients obtained in ii) and its covariance 

matrix is computed based on the estimates of covariance matrix obtained in iii). 

The joint probability model can be used to generate samples of monthly energy uses for a year in 

a target building, with realistic seasonal pattern and magnitude. Also, the joint probability model 

can be used to fill missing values or replace incorrect values of monthly energy use in a building 

with reasonable estimations, given that some correct values of monthly energy use are recorded 

in that building. The key to success of the provided model is the consideration of covariance 

between monthly energy uses, which exists even after controlling the effects of building size, 

height, and age. 
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